Pre-SUSY 2021: The Summer School on Supersymmetry and Unification of Fundamental Interactions

Hints of new physics in semi-leptonic B decays

Lisheng Geng (耿立升) @ Beihang U. lisheng.geng@buaa.edu.cn

Background

- □ Theoretical framework
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

Background

- Theoretical framework
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

Frontiers in high energy physics

US Particle Physics Scientific Opportunities: A Strategic Plan for the Next 10 Years

CMS&ATLAS: higgs; supersymmetric Particles; new interactions; ...

LCHb&Bellell&BESIII: new hadronic States; heavy flavor physics (B physics); ...

Indirect detection of NP via the test of the lepton universality (LU) is one of the hot topics.

□ SM Lagrangian

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{\theta}{16\pi^2} G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} \\ &+ \sum_{\psi = \{l, e, u, d, q\}} \bar{\psi} i \vec{D} \psi - \left[\bar{l} H Y_l e + \bar{q} H Y_d d + \bar{q} \tilde{H} Y_u u + \text{hc.} \right] \\ &+ D_{\mu} H^{\dagger} D^{\mu} H + \frac{m_h^2}{2} (H^{\dagger} H) - \lambda (H^{\dagger} H)^2 \\ D_{\mu} \sim \partial_{\mu} + ig_s G^{a}_{\mu} T^a + ig W^{i}_{\mu} t^i + ig' B_{\mu} \end{split}$$

Standard Model of Elementary Particles

Lepton universality (LU) in the Standard Model (SM)

From the 2020 PDG averages

$$\frac{B(W^+ \to \mu^+ \nu)}{B(W^+ \to e^+ \nu)} = 0.991 \pm 0.018$$

$$\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to e^+ \nu)} = 1.043 \pm 0.024$$

$$\frac{B(W^+ \to \tau^+ \nu)}{B(W^+ \to \mu^+ \nu)} = 1.070 \pm 0.026$$

$$\frac{B(Z \to \mu^+ \mu^-)}{B(Z \to e^+ e^-)} = 1.0009 \pm 0.0032$$

Predictions in the SM: ~1; the largest deviation about 2.7 sigma

Lepton universality (LU) in the Standard Model (SM)

ATLAS: 139 fb pp collision data at 13 TeV

Nature Physics 17 (2021)813

7

However, some LU violation signals (R_D , R_{D^*} , R_K , R_{K^*} , etc.) in B semi-leptonic decays have shown persistent deviation from the SM

Progress in experimental measurements

Testing LUV ($\mu \neq e$) in FCNC $b \rightarrow s l l$ decays, i.e., R_{κ} and R_{κ^*}

$$\mathbf{R}^{\mathrm{SM}}_{\mathbf{K}^{(*)}} = \frac{\Gamma(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mu^+ \mu^-)}{\Gamma(\mathbf{B} \rightarrow \mathbf{K}^{(*)} \mathbf{e}^+ \mathbf{e}^-)} \cong \mathbf{1}$$

 Belle:
 PRL103(2009)171801
 LHCb

 BaBar:
 PRD86(2012)032012
 LHCb

 LHCb:
 PRL113(2014)151601
 Belle:

 LHCb:
 arXiv:
 2103.11769

LHCb: JHEP08(2017)055 LHCb: PRL122(2019)191801 Belle: PRL126 (2019)161801

BELLE

□ Belle 2009 and BaBar 2012 measurements , no anomalies.

□ LHCb 2014 - 2021, the significance of tension with the SM increases 2.6 σ - 3.1 σ for R_K. □ For R_K, the LHCb 2017 measurements deviate from the SM with a significance of ~2.3 σ , 2.4 σ .

Testing LUV ($\tau \neq \mu/e$) in $b \rightarrow c \tau \nu$ decays, i.e., R_D and R_{D^*}

$$\mathbf{R}_{\mathbf{D}^{(*)}}^{\mathrm{SM}} = \frac{\Gamma(\mathbf{B} \to \mathbf{D}^{(*)} \tau \bar{\nu})}{\Gamma(\mathbf{B} \to \mathbf{D}^{(*)} \ell \bar{\nu})}, \qquad (\ell = \mu, \mathbf{e})$$

- **D** Belle 2019 measurement of R_D and R_{D^*} with a semi-leptonic tagging method;
- **D** Belle 2019 measurements are compatible with the SM within 1.2σ ;
- □ HFLAV 2019 results are closer to the SM predictions.

Theoretical approaches to study anomalies in B physics

G "Top-down" approaches:

• Leptoquark model

Oleg Popov et al, PRD100.035028 Claudia Cornella et al, JHEP07(2019)168 Leandro Da Rold et al, JHEP12(2019)112

• Z' boson model

Ashutosh Kumar Alok et el, EPJC80 (2020)7,682 Wolfgang Altmannshofer et al, PRD101.015004 Siddharth Dwivedi et al, EPJC80 (2020) 3, 263

Two-Higgs-doublet model
 Astrid Ordell et al, PRD100.115038
 Ya-Dong Yang et al, JHEP09(2018)149
 Luigi Delle Rose et al, PRD101.115009

G "Bottom-up" approach:

• low-energy effective Hamiltonian approach.

Background

- □ Theoretical framework
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

Low-energy effective Hamiltonian approach

DFCNC: $b \rightarrow s l l$ transition

The low energy effective Hamiltonian at $O(m_b)$ scale:

- \blacktriangleright Wilson coefficients Ci(μ) calculated in perturbation theory at $\mu = m_w$ and rescaled to $\mu = m_b$.
- For a specific decay mode, another important work is to calculate hadronic matrix elements produced by operators involving non-perturbative effects.

DFCNC: $b \rightarrow s l l$ transition

$$G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} C_{9(10)} \bar{s}_L \gamma^\mu b_L \bar{\ell} \gamma_\mu (\gamma_5) \ell$$

New chirally-flipped operators:

$$\mathcal{O}_{9(10)}' = \frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} \,\bar{s} \gamma^{\mu} P_R b \,\bar{\ell} \gamma_{\mu}(\gamma_5) \ell$$

 $\blacktriangleright \quad \text{Different values of Wilson coefficients} \quad \mathbf{C}_i^{\mathrm{expt.}} = \mathbf{C}_i^{\mathrm{SM}} + \delta \mathbf{C}_i + \mathbf{C}_i'$

> Note that O_s , O_p and O_T cannot explain R_K and R_{K*} from J. Martin Camalich et al, PRL113.241802.

Using the low energy effective Hamiltonian to calculate amplitude and observables

Fitting to experimental data and constraining δCi

Using the frequentist statistic approach to analyze fit results

Key questions

Assuming that the NP only appears in the muon channels and all Wilson coefficients are real.

\Box Only the operators O_9 , O_{10} instead of O_9 ', O_{10} ' are favored by the data.

Interesting decay channels of $b \rightarrow s l l$ decays

D Note that $BR(B \rightarrow K^* \gamma)$ can fix better soft form factors.

E.g: Form factors $F(q^2)$: HQEFT

 $F(q^2) = F^{\infty}(q^2) + a_F + b_F q^2 / m_B^2 + \mathcal{O}([q^2 / m_B^2]^2)$

Soft form factors

Very clean (*f_{Bs}* has been calculated accurately by the LQCD) FLAG 2019, *EPJC*80(2020)2,113
 Very rare (GIM and helicity suppression)

 $B \rightarrow K \mu^+ \mu^-$ decay

- □ Kinematics range for the 3-body decay is $q^2 \in [4m_l^2, (m_B m_K)^2]$
- □ There are very complicated non-perturbative effects
- **Charmonium region** cannot be calculated by perturbation theory

$B \rightarrow K^* (\rightarrow K\pi) \mu^+ \mu^-$ decay

Kinematics of 4-body decay:

\Box Focusing on low bins (q²≤6 GeV²):

► Form factors
$$F(q^2)$$
: HQEFT
Power corrections
 $F(q^2) = F^{\infty}(q^2) + a_F + b_F q^2 / m_B^2 + O([q^2 / m_B^2]^2)$.
Soft form factors
► Charm loops $h_{\lambda}(q^2)$: HQEFT
 $h_{\lambda}(q^2) = h_{\lambda}^{\infty}(q^2) + r_{\lambda}(q^2) - r_{\lambda}(q^2) = A_{\lambda} + B_{\lambda} \frac{q^2}{4m_c^2}$

$$\frac{d^{(4)}\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_K d\phi} = \frac{9}{32\pi} I^{(\ell)}(q^2,\theta_\ell,\theta_K,\phi),$$

$$\theta_K,\phi) = \left(I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K + (I_2^s \sin^2\theta_K + I_2^c \cos^2\theta_K) \cos 2\theta_\ell + I_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + I_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + (I_6^s \sin^2\theta_K + I_6^c \cos^2\theta_K) \cos \theta_\ell + I_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + I_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + I_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi\right),$$

$$\begin{split} F_L &= S_{1c}, \qquad P_1 = \frac{2S_3}{1 - F_L}, \\ P_2 &= \frac{2}{3} \frac{A_{FB}}{1 - F_L}, \qquad P_3 = \frac{-S_9}{(1 - F_L)}, \\ P'_4 &= \frac{S_4}{\sqrt{F_L(1 - F_L)}}, \qquad P'_5 = \frac{S_5}{\sqrt{F_L(1 - F_L)}}, \\ P'_6 &= \frac{S_7}{\sqrt{F_L(1 - F_L)}}, \qquad P'_8 = \frac{S_8}{\sqrt{F_L(1 - F_L)}}, \end{split}$$

In total, 27 hadronic parameters !!!

Calculated in LCSR + QCDF

Research procedures: $b \rightarrow s l l$ decays

Statistics: χ^2 fit & Frequentist analysis

$$\Box \chi^{2} \text{ fit}$$

$$\tilde{\chi}^{2}(\vec{\epsilon}, \vec{y}) = \chi^{2}_{\exp}(\vec{\epsilon}, \vec{y}) + \chi^{2}_{th}(\vec{y})$$

$$\chi^{2}_{\exp}(\vec{\epsilon}, \vec{y}) = [\vec{O}^{\text{th}}(\vec{\epsilon}, \vec{y}) - \vec{O}^{\exp}]^{T} \cdot (V^{\exp})^{-1} \cdot [\vec{O}^{\text{th}}(\vec{\epsilon}, \vec{y}) - \vec{O}^{\exp}],$$

$$\chi^{2}_{th}(\vec{y}) = (\vec{y} - \vec{y}_{0})^{T} \cdot (V^{th})^{-1} \cdot (\vec{y} - \vec{y}_{0}),$$

 \vec{y} 27 hadronic parameters (b \rightarrow sll) 20 hadronic parameters (b \rightarrow clv) $\vec{\epsilon}$ Wilson coefficients

> The theory term is also parameterized in a Gaussian form

$$\chi_{\rm th}^2(\vec{y}) = \sum_i \left(\frac{y_i - \bar{y}_i}{\delta y_i}\right)^2,$$

> In order to obtain best-fit values in a particular scenario, we can construct a profile χ^2 depending only on certain Wilson coefficients

$$\chi^2(\vec{\epsilon}) = \min_{\vec{y}} \tilde{\chi}^2(\vec{\epsilon}, \vec{y})$$

□ Frequentist analysis

> P-value: it is a statement how well the SM or BSM describes the data

 $\begin{aligned} \text{P-value}_{\text{SM}} &= 1 - \text{CDF}[\chi^2 \text{-distribution}[n_{\text{exp}}], \chi^2_{\text{min,SM}}] \\ \text{P-value}_{\text{NP}} &= 1 - \text{CDF}[\chi^2 \text{-distribution}[n_{\text{exp}} - n_{\epsilon}], \chi^2_{\text{min,NP}}] \end{aligned}$

> Pull_{SM}: the significance of deviation from SM

$$\begin{split} &\Delta\chi^2_{\rm SM} = {\rm Quantile}[\chi^2 - {\rm distribution}[1], {\rm CDF}[\chi^2 - {\rm distribution}[n_\epsilon], \chi^2_{\rm min, SM} - \chi^2_{\rm min, NP}]] \\ &{\rm Pull}_{\rm SM} = \sqrt{\Delta\chi^2_{\rm SM}} \end{split}$$

The larger the p-value_{NP}, the higher the significance of deviation from SM (the larger the $Pull_{SM}$); but the smaller p-value_{SM} tells us that the SM hypothesis under consideration may not adequately explain the data.

- Background
- □ Theoretical framework
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

Latest experimental data

Observable	Observable Value		
	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	ATLAS	ATLAS: JHEP04(2019)098
	$(2.9\pm0.7\pm0.2)\times10^{-9}$	CMS	CMS: JHEP04(2020)188
$BR(B_s \to \mu^+ \mu^-)$	$(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$	LHCb update	Moriond 2021 seminar
	$(2.842 \pm 0.333) \times 10^{-9}$	our average	
	$(3.63 \pm 0.13) \times 10^{-9}$	SM prediction	
$R_{K}[1.1, 6]$	0.846 ± 0.044	LHCb	Moriond 2021 seminar
$R_{K}[1, 6]$	1.03 ± 0.28	Belle	Belle: JHEP03(2021)105
$R_{K^*}[0.045, 1.1]$	0.660 ± 0.113	LHCb	1 HCb. 1HEP08(2017)055
$R_{K^*}[1.1, 6]$	0.685 ± 0.122	LHCb	LINED. JILLI 00(2017)033
$R_{K^*}[0.045, 1.1]$	0.52 ± 0.365	Belle	Pollo, DDI 126/2010/161901
$R_{K^*}[1.1, 6]$	0.96 ± 0.463	Belle	Delle: PKL120(2019)101801

Conservative experimental uncertainties.

$$0.66^{+0.11}_{-0.07} \pm 0.03
ightarrow 0.66 \pm \sqrt{0.11^2 + 0.03^2} = 0.66 \pm 0.113$$

Clean Fit (2021 update)

 δC_L^{μ}

-0.40

0.29

7.36 [6 dof]

$ (\delta C_9^{\mu}, \delta C_{10}^{\mu}) \ (-0.11, 0.59) \ 6.38 \ [5 \text{ dof}] \ 0.27 \ 4.62 \ \delta C_9^{\mu} \in [-0.41, \ 0.17] \ \delta C_{10}^{\mu} \in [0.38, \ 0.81] \ 0.762 $
Compared to the 2017 results, the significance of deviation from the SM has increased up to ~ 5σ
Scenarios with pure axial currents, provide the best description of the data

[-0.48, -0.31]

[-0.66, -0.15]

4.89

30

Global Fit (2021 update)

Coeff.	best fit	$\chi^2_{ m min}$	p-value	$\operatorname{Pull}_{\operatorname{SM}}$	1σ range	3σ range	ρ
δC_9^{μ}	-0.85	106.32 [93 dof]	0.16	4.53	[-1.06, -0.64]	[-1.50, -0.27]	-
δC^{μ}_{10}	0.54	107.82 [93 dof]	0.14	4.37	[0.41, 0.67]	[0.16, 0.94]	-
δC_L^{μ}	-0.39	102.81 [93 dof]	0.23	4.91	$\left[-0.48,-0.31\right]$	$\left[-0.65, -0.15\right]$	_
$(\delta C_9^\mu, \delta C_{10}^\mu)$	(-0.56, 0.30)	102.36 [92 dof]	0.22	4.58	$\delta C_9^{\mu} \in [-0.79, -0.31]$	$\delta C_{10}^{\mu} \in [0.15, 0.49]$	0.317

Compared to the clean fit, δC₉ (δC₁₀) is far away from (close to) the SM.
 Compared to the 2017 results, the value of δC₉ and δC₁₀ are better constrained.

Robustness of fits with respect to hadronic uncertainties

27 hadronic parameters in low q²: PRD93(1):014028,2016, JHEP, 05:043, 2013

QCDf(11)	$\mu, \xi_{\perp}(0), \xi_{\parallel}(0), f_{K^{\star}}, a1_{\perp}, a2_{\perp}(0), a1_{\parallel}(0), a2_{\parallel}(0), \omega_{0}, r_{\perp}, r_{\parallel}$
Power Corrections(8)	$V_{-}(a _{\max}), V_{-}(b _{\max}), V_{+}(a _{\max}), V_{+}(b _{\max}), T_{+}(b _{\max}), V_{0}(b _{\max}), T_{0}(a _{\max}), T_{0}(b _{\max})$
Charm contributions(8)	$h_{- c\bar{c}}(a _{\max}), h_{- c\bar{c}}(b _{\max}), \phi_{- c\bar{c}}, h_{+ c\bar{c}}(a _{\max}), h_{+ c\bar{c}}(b _{\max}), \phi_{+ c\bar{c}}, h_{0} _{c\bar{c}}, \phi_{0} _{c\bar{c}}$

□ Global fit result is sensitive to hadronic uncertainties. Therefore, hadronic uncertainties should be further studied in the future 32

- **\Box** Only operators O_9 , O_{10} can explain the experiment data
- □ We obtain conservative parameter space of new physics
- **\Box** Significance of the SM exclusion is ~ 5 σ
- □ Global fit result is sensitive to hadronic uncertainties which

should be future studied in the future

- Background
- **Theoretical framework**
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

□ Low energy effective Lagrangian

Jorge Martin Camalich et al, PRD94.094021

$$\mathcal{L}_{\text{eff}}^{\text{LE}} \supset -\frac{4G_F V_{cb}}{\sqrt{2}} [(1+\epsilon_L^{\tau})(\bar{\tau}\gamma_\mu P_L \nu_\tau)(\bar{c}\gamma^\mu P_L b) + \epsilon_R^{\tau}(\bar{\tau}\gamma_\mu P_L \nu_\tau)(\bar{c}\gamma^\mu P_R b) + \epsilon_{S_L}^{\tau}(\bar{\tau}P_L \nu_\tau)(\bar{c}P_L b) + \epsilon_{S_R}^{\tau}(\bar{\tau}P_L \nu_\tau)(\bar{c}P_R b) + \epsilon_T^{\tau}(\bar{\tau}\sigma_{\mu\nu}P_L \nu_\tau)(\bar{c}\sigma^{\mu\nu}P_L b)] + \text{H.c.}$$

- \succ Wilson coefficients ϵ stand for NP contributions.
- Right-handed vector cannot explain LUV 1505.05164. Consider

$$-\frac{4G_F V_{cb}}{\sqrt{2}} (\tilde{\epsilon}_R^\tau \bar{\tau} \gamma_\mu N_R) (\bar{c} \gamma^\mu P_R b) + 35$$

Hadronic matrix elements in the $b \rightarrow c \tau v$ amplitudes

$$\begin{split} \langle D(k)|\bar{c}\gamma^{\mu}b|\bar{B}(p)\rangle &= (p+k)^{\mu}f_{+}(q^{2}) + (p-k)^{\mu}\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}(f_{0}(q^{2})-f_{+}(q^{2})), \\ \langle D(k)|\bar{c}b|\bar{B}(p)\rangle &= \frac{m_{B}^{2}-m_{D}^{2}}{m_{b}-m_{c}}f_{0}(q^{2}), \\ \langle D(k)|\bar{c}\sigma^{\mu\nu}b|\bar{B}(p)\rangle &= \frac{2if_{T}(q^{2})}{m_{B}+m_{D}}(k^{\mu}p^{\nu}-p^{\mu}k^{\nu}), \\ \langle D(k)|\bar{c}\sigma^{\mu\nu}\gamma_{5}b|\bar{B}(p)\rangle &= \frac{2f_{T}(q^{2})}{m_{B}+m_{D}}\epsilon^{\mu\nu\alpha\beta}k_{\alpha}p_{\beta}, \\ \langle V(k,\epsilon)|\bar{c}\gamma^{\mu}b|P(p)\rangle &= \frac{2iV(q^{2})}{m_{P}+m_{V}}\epsilon^{\mu\nu\alpha\beta}\epsilon^{*}_{\nu}k_{\alpha}p_{\beta}, \\ \langle V(k,\epsilon)|\bar{c}\gamma^{\mu}\gamma_{5}b|P(p)\rangle &= -\frac{2m_{V}}{m_{b}+m_{c}}A_{0}(q^{2})\epsilon^{*}\cdot q, \\ \langle V(k,\epsilon)|\bar{c}\gamma^{\mu}\gamma_{5}b|P(p)\rangle &= 2m_{V}A_{0}(q^{2})\frac{\epsilon^{*}\cdot q}{q^{2}}q^{\mu} + (m_{P}+m_{V})A_{1}(q^{2})\left(\epsilon^{*\mu}-\frac{\epsilon^{*}\cdot q}{q^{2}}q^{\mu}\right) \\ &-A_{2}(q^{2})\frac{\epsilon^{*}\cdot q}{m_{P}+m_{V}}\left((p+k)^{\mu}-\frac{m_{P}^{2}-m_{V}^{2}}{q^{2}}q^{\mu}\right) \\ \langle V(k,\epsilon)|\bar{c}\sigma^{\mu\nu}b|P(p)\rangle &= \frac{\epsilon^{*}\cdot q}{(m_{P}+m_{V})^{2}}T_{0}(q^{2})\epsilon^{\mu\nu\alpha\beta}p_{\alpha}k_{\beta} \\ &+T_{1}(q^{2})\epsilon^{\mu\nu\alpha\beta}p_{\alpha}\epsilon^{*}_{\beta} + T_{2}(q^{2})\epsilon^{\mu\nu\alpha\beta}k_{\alpha}\epsilon^{*}_{\beta}, \\ \langle V(k,\epsilon)|\bar{c}\sigma^{\mu\nu}\gamma_{5}b|P(p)\rangle &= \frac{i\epsilon^{*}\cdot q}{(m_{P}+m_{V})^{2}}T_{0}(q^{2})(p^{\mu}k^{\nu}-k^{\mu}p^{\nu}) \\ &+iT_{1}(q^{2})(p^{\mu}\epsilon^{*\nu}-\epsilon^{*\mu}p^{\nu}) + iT_{2}(q^{2})(k^{\mu}\epsilon^{*\nu}-\epsilon^{*\mu}k^{\nu}), \end{split}$$

Decay constant:

→ $B_c \rightarrow \tau \nu$: LQCD HPQCD: PRD91.114509

Given Form factors :

- ► $B \rightarrow D^{(*)} \tau \nu$: HQET(LO) & fitting to data & LQCD Jorge Martin Camalich et al, PRD94.094021
- → $B_c \rightarrow J/\psi \tau \nu$: covariant light-front quark model (LFQM) Cai-Dian Lv et al, PRD79.054012

				the most r	eliable
Observables		Data (a	verages)		SM
	HFLA	V 2018	HFLA	2019	
R_D	0.407(39)(24)		0.340(27)(13)		0.312(19)
		corr = -0.20		corr = -0.38	
R_{D^*}	0.306(13)(7)		0.295(11)(8)		0.253(4)
$R_{J/\psi}$		0.71(1	7)(18)		0.248(3)
$P^{D^*}_{ au}$		-0.505(23)			
$F_L^{D^*}$		0.455(9)			

□ Further observables τ polarization asymmetry $P_{\tau}^{D^*}$ and the longitudinal polarization of D ($F_L^{D^*}$) in the $B \rightarrow D^* \tau \nu$ decay:

$$P_{\tau}^{D^*} = \frac{\Gamma(\lambda_{\tau} = \frac{1}{2}) - \Gamma(\lambda_{\tau} = -\frac{1}{2})}{\Gamma(\lambda_{\tau} = \frac{1}{2}) + \Gamma(\lambda_{\tau} = -\frac{1}{2})}, \qquad R_{J/\psi} = \frac{\Gamma(B_c \to J/\psi\tau\bar{\nu})}{\Gamma(B_c \to J/\psi\mu\bar{\nu})}$$
$$F_L^{D^*} = \frac{\Gamma(\lambda_{D^*} = 0)}{\Gamma(\lambda_{D^*} = 1) + \Gamma(\lambda_{D^*} = 0) + \Gamma(\lambda_{D^*} = -1)}, \qquad R_{J/\psi} = \frac{\Gamma(B_c \to J/\psi\tau\bar{\nu})}{\Gamma(B_c \to J/\psi\mu\bar{\nu})}$$

Tension with SM~2 σ , but the significance of $R_{J/\psi}$ is less than 4 σ .

Fits to R_D and R_{D^*} only

- > New Belle measurement with semileptonic tag
- > 2018HFLAV
- The combination of the above two

$$\succ \quad \text{Vector: } \epsilon_L^\tau \text{ or } \tilde{\epsilon}_R^\tau$$

Scalar-Tensor
$$\epsilon_{SL}^{\tau} = -4\epsilon_{T}^{\tau}$$

 \succ Tensor ϵ_T^{τ}

- 2018 HFLAV, only vector and scalar-tensor works
- □ After Belle, tensor also works

Fits to R_D and R_{D^*} only

- **D** Dotted lines show that the significance of deviation from SM is more than 3σ .
- **The (left)vector and tensor operators give better fits to the data (than the other two).**
- **The** χ^2 difference shows that the 2018 HFLAV data are in conflict with the 2019 HFLAV data.

Fits to R_D and R_{D^*} only : six 2D plots

Fits to R_D and R_{D^*} only

 $\chi^2_{SM} = 20.75$ p-value in SM : 1.38×10⁻²

	Best fit	$\chi^2_{\rm min}$	p-value	Pull _{SM}	1σ range	
$\epsilon_L^{ au}$	0.07	9.00	0.34	3.43	(0.05, 0.09)	
$\epsilon_T^{ au}$	-0.03	9.85	0.28	3.30	(-0.04, -0.02)	
$\epsilon_{S_I}^{ au}$	0.09	19.14	1.41×10^{-2}	1.27	(0.02, 0.15)	
$\epsilon^{ au}_{S_{H}}$	0.13	15.84	4.47×10^{-2}	2.22	(0.07, 0.20)	
$\tilde{\epsilon}_R^{ au}$	0.38	9.00	0.34	3.43	(0.32, 0.44)	
$\epsilon^{\tau}_{S_L} = -$	$-4\epsilon_T^{\tau}$ 0.09	12.25	0.14	2.92	(0.06, 0.12)	
$(\epsilon_{S_L}^{\tau},$	ϵ_T^{τ}) (0.07, -0.03)	8.7	0.27	3.03	$\epsilon^{\tau}_{S_L} \in (0.00, 0.14)$ $\epsilon^{\tau}_T \in (-0.04, -0.02)$	
$(\epsilon_{S_L}^{ au}, \epsilon_{S_L})$	(-0.47, 0.53)	8.7	0.27	3.03	$\epsilon_{S_L}^{\tau} \in (-0.66, -0.30) \epsilon_{S_R}^{\tau} \in (0.37, 0.69)$	
$(\epsilon_{S_R}^{\tau},$	ϵ_T^{τ}) (0.07, -0.03)	8.7	0.27	3.03	$\epsilon^{\tau}_{S_R} \in (0.00, 0.14) \epsilon^{\tau}_T \in (-0.04, -0.02)$	
$(\epsilon_L^{ au},\epsilon_L^{ au})$	(0.05, -0.01)	8.7	0.27	3.03	$\epsilon_L^\tau \in (0.00, 0.09) \epsilon_T^\tau \in (-0.03, 0.01)$	
$(\epsilon_L^{ au},\epsilon)$	${}^{\tau}_{S_L}$) (0.08, -0.04)	8.7	0.27	3.03	$\epsilon_L^{\tau} \in (0.05, 0.10) \epsilon_{S_L}^{\tau} \in (-0.13, 0.04)$	
$(\epsilon_L^{ au},\epsilon)$	(0.08, -0.05)	8.7	0.27	3.03	$\epsilon_L^{\tau} \in (0.05, 0.11)$ $\epsilon_{S_R}^{\tau} \in (-0.15, 0.04)$	

- □ Vectors are the best. Scalars are ruled out
- $\hfill\square$ The significance of deviation from SM is more than 3σ

□ For example, assuming NP couplings are of O(1) order:

Scalar LQ

```
> Vector LQ
```

```
m_{\mathbf{S_1}} pprox m_{\mathbf{S_3}} pprox m_{\mathbf{R_2}} pprox \mathbf{2.3 ~TeV}
```

 $m_{U_1}\approx m_{U_3}\approx 3.3~TeV$

Fits to all the 2019 HFLAV data

Fits to all the 2019 HFLAV data

 $\chi^2_{min,SM} = 26.53$ p-value in SM : 9.02×10⁻³

		Best fit	$\chi^2_{\rm min}$	p-value	Pull _{SM}	1σ range	
ϵ_L^{τ}		0.07	14.56	0.20	3.46	(0.05, 0.09)	
$\epsilon_T^{ au}$		-0.03	15.70	0.15	3.29	(-0.04, -0.02)	
$\epsilon_{S_{II}}^{\tau}$	ı.	0.08	25.23	8.44×10^{-3}	1.14	(0.01, 0.14)	
$\epsilon_{S_{I}}^{\tau}$	2	0.14	21.24	$3.10 imes 10^{-2}$	2.30	(0.08, 0.20)	
$(\epsilon_{S_L}^{\tau},$	ϵ_T^{τ}) ((0.07, -0.03)	14.75	0.14	3.00	$\epsilon_{S_L}^{\tau} \in (0.00, 0.13) \epsilon_T^{\tau} \in (-0.04, -0.02)$	
$(\epsilon_{S_L}^{\tau},\epsilon)$	$\epsilon_{S_R}^{\tau}$) ((-0.51, 0.56)	12.14	0.28	3.37	$\epsilon_{S_L}^{\tau} \in (-0.69, -0.34)$ $\epsilon_{S_R}^{\tau} \in (0.41, 0.73)$	
$(\epsilon_{S_R}^{\tau},$	ϵ_T^{τ}) ((0.08, -0.03)	14.38	0.16	3.05	$\epsilon_{S_R}^{\tau} \in (0.01, 0.14) \epsilon_T^{\tau} \in (-0.04, -0.02)$	
$(\epsilon_L^{ au},\epsilon_L^{ au})$	ϵ_T^{τ}) ((0.05, -0.01)	14.32	0.16	3.06	$\epsilon_L^{\tau} \in (0.01, 0.10)$ $\epsilon_T^{\tau} \in (-0.03, 0.01)$	
$(\epsilon_L^{\tau},\epsilon)$	$\left(\frac{\tau}{S_L} \right)$ ((0.08, -0.06)	14.09	0.17	3.09	$\epsilon_L^{\tau} \in (0.06, 0.10)$ $\epsilon_{S_L}^{\tau} \in (-0.14, 0.03)$	
$(\epsilon_L^{\tau},\epsilon)$	$\left(\frac{\tau}{S_R}\right)$	(0.08, -0.05)	14.33	0.16	3.06	$\epsilon_L^{\tau} \in (0.05, 0.11)$ $\epsilon_{S_R}^{\tau} \in (-0.14, 0.05)$	

□ Scalar disfavored

 \Box The significance of deviation from SM is more than 3 σ .

Possibility of discriminating different NP structures: only fitting to R_D and R_{D*}

A measurement of the tau polarization in the decay mode $B \rightarrow D \tau \nu$ would effectively discriminate different NP scenarios.

Possibility of discriminating different NP structure

Observables	bservables SM	$\epsilon_T^{\tau} = -0.03$	$(\epsilon^{\tau}_{S_L}, \epsilon^{\tau}_T)$	$(\epsilon_L^{\tau}, \epsilon_{S_R}^{\tau})$	$(\epsilon_L^{\tau}, \epsilon_T^{\tau}, \epsilon_{S_L}^{\tau}, \epsilon_{S_R}^{\tau})$
Observables			= (0.07, -0.03)	= (0.08, -0.05)	= (0.16, 0.05, -0.33, 0.14)
R_D	$0.312^{+0.019}_{-0.018}$	$0.303^{+0.019}_{-0.018}$	$0.340^{+0.023}_{-0.021}$	$0.339^{+0.020}_{-0.018}$	0.343 ^{+0.017} 0.016
$P^D_{ au}$	$0.338^{+0.033}_{-0.034}$	$0.358^{+0.033}_{-0.034}$	$0.427^{+0.032}_{-0.032}$	$0.288^{+0.034}_{-0.034}$	$0.117^{+0.033}_{-0.033}$
A^D_{FB}	$-0.358^{+0.003}_{-0.003}$	$-0.344^{+0.004}_{-0.003}$	$-0.334^{+0.005}_{-0.004}$	$-0.363^{+0.002}_{-0.002}$	$-0.383^{+0.002}_{-0.001}$
R_{D^*}	$0.253^{+0.004}_{-0.004}$	$0.293\substack{+0.004\\-0.004}$	$0.291^{+0.004}_{-0.003}$	$0.293^{+0.004}_{-0.004}$	$0.297^{+0.009}_{-0.008}$
$P_{ au}^{D^{\star}}$	$-0.505^{+0.024}_{-0.022}$	$-0.477^{+0.020}_{-0.019}$	$-0.487^{+0.019}_{-0.017}$	$-0.513^{+0.023}_{-0.021}$	$-0.430^{+0.042}_{-0.041}$
$A_{FB}^{D^*}$	$0.068^{+0.013}_{-0.013}$	$0.030\substack{+0.012\\-0.012}$	$0.038^{+0.012}_{-0.012}$	$0.073^{+0.013}_{-0.013}$	$0.083^{+0.017}_{-0.016}$
$F_L^{D^{\star}}$	$0.455^{+0.009}_{-0.008}$	$0.444^{+0.008}_{-0.007}$	$0.440^{+0.007}_{-0.007}$	$0.452^{+0.008}_{-0.008}$	$0.497^{+0.015}_{-0.014}$
$R_{J/\psi}$	$0.248^{+0.003}_{-0.003}$	$0.291^{+0.004}_{-0.004}$	$0.289^{+0.004}_{-0.004}$	$0.288^{+0.004}_{-0.004}$	$0.284^{+0.003}_{-0.003}$
$P_{ au}^{J/\psi}$	$-0.512^{+0.011}_{-0.010}$	$-0.481\substack{+0.009\\-0.008}$	$-0.490^{+0.008}_{-0.008}$	$-0.519^{+0.010}_{-0.010}$	$-0.453^{+0.020}_{-0.019}$
$A_{FB}^{J/\psi}$	$0.042\substack{+0.006\\-0.006}$	$0.007\substack{+0.006\\-0.006}$	$0.013^{+0.006}_{-0.006}$	$0.046^{+0.006}_{-0.006}$	$0.061^{+0.007}_{-0.007}$
$F_L^{J/\psi}$	$0.446^{+0.003}_{-0.003}$	$0.434^{+0.003}_{-0.003}$	$0.430^{+0.002}_{-0.002}$	$0.443^{+0.003}_{-0.003}$	$0.490^{+0.005}_{-0.005}$

Indeed, P_{τ}^{D} is an excellent observable which can be measured in Belle II and upgraded LHCb.

No corresponding NP

- **\Box** Significance of the SM exclusion is more than 3σ .
- □ BR($B_c \rightarrow \tau \nu$), the LHC monotau and $F_L^{D^*}$ can exclude large regions of the parameter space.
- □ We tested some NP models in which LQs can explain the data.
- □ We also found that the **T** polarization P_{τ}^{D} in the B→D $\tau \nu$ decay is sensitive to the various new-physics scenarios which are favored by the current data.

Background

- □ Theoretical framework
- Results and discussions
 - > Flavor-changing-neutral-current(FCNC) $b \rightarrow s l l$ decays
 - > Charged-current(CC) $b \rightarrow c \tau \nu$ decays
- □ Summary and outlook

Summary and Outlook

- **\Box** Significance of the SM exclusion for $b \rightarrow s l l$ transition is ~ 5 σ
- □ Significance of the SM exclusion for $b \rightarrow c \tau v$ transition is more than 3σ
- We also test some NP models, only some LQs can explain the current data
- □ We also found that the **T** polarization P_{τ}^{D} in the B→D $\tau \nu$ decay is sensitive to the various new-physics scenarios which are favored by the current data

In the next few years, with the collection of more data at the B factories and improvement of experimental precision:

- □ We will continually update our analysis.
- In addition, new theoretical works on the theoretical side will be needed to better assess uncertainties.
 - > Form factors and charm contributions for $b \rightarrow s l l$ transition
 - **>** Form factors for $b \rightarrow c \tau \nu$ transition
- Meantime, it is also important to continue to find or construct new observables which are very sensitive to new physics.

Thanks for your attention!

Rui-Xiang Shi Beihang U.

Jorge Martin Camalich La Laguna U.

Sebastian Jäger

Sussex U.

Benjamín Grinstein

UCSD

Shuang-Yi Li Beihang U.

Backup slides

Right-handed vector operator cannot explain LUV

SMEFT

LEEFT

NP particles do not directly couple to two leptons in the two-Higgs model. Therefore, the right-handed vector operator cannot contribute to and explain lepton universality violation.

4D global fit for $b \rightarrow c \tau \nu$ decays

